※머신러닝의 목적 무엇(X)으로 무엇(Y)를 예측하고 싶다! 이때, 데이터는 주로 행렬, 배열 등의 형태로 되어있다. 머신러닝의 목적을 간단하게 수식으로 표현을 한다면 Y = F(X) 이다. X : 우리가 가지고 있는 데이터를 의미하며, 입력변수 / 독립변수 / Feature이라고 부른다. Y : 우리가 예측하고 싶은 데이터를 의미하며, 출력변수 / 종속변수 / 반응변수라고 부른다. F : X를 통해서 Y를 예측할 수 있도록 입력변수와 출력변수간 관계를 의미한다. 머신러닝은 주어진 데이터를 통해 입력변수와 출력변수 간 관계를 만드는 함수 F를 만드는 것이라고 볼 수 있다. ※머신러닝이 필요한 이유 데이터의 양이 기하급수적으로 늘어나고 있는 상황에서 모든 분야의 모집단을 전수조사한다는 것은 거의 불가능하고..
강화학습 검색 결과
해당 글 2건
Machine Learning 의 개념
기계학습/Machine Learning
2020. 7. 16. 12:26
(SM) 머신러닝(Machine Learning) - 지도학습, 비지도학습, 강화학습
참고 1 패스트캠퍼스 온라인강의 머신러닝과 데이터분석 A-Z 참고 2 https://blog.naver.com/handuelly/221823696658 참고 3 https://wendys.tistory.com/169 머신 러닝(Machine Learning)은 데이터를 이용해서 컴퓨터를 학습 시키는 것으로, 구현하는 알고리즘(방법)은 3가지로 구분된다. 1 - 지도학습, 2 - 비지도학습, 3- 강화학습 1. 지도학습(supervised learning) Y = F(X)에 대하여 입력 변수(X)와 출력 변수(Y)의 관계에 대하여 모델링하는 것 데이터(x, input)에 대한 명시적 정답인 레이블(y, output)이 주어진 상태에서 컴퓨터를 학습시키는 방법 예를 들어 3x5 = 15, 6x4 =24등을 ..
데이터 사이언스 메뉴얼/Machine Learning
2020. 3. 2. 00:50
최근댓글