전 글에 이어서 진행됩니다. 조건에 맞는 데이터 선택하기(boolean indexing) x % 2 == 0을 사용해 데이터들을 boolean형태로 바꿔준다. even_mask라는 변수에 조건 대입 원래있던 변수인 x에 대괄호를 사용해 x[even_mask]를 사용하면 해당 조건에 True인 값들만 다시 ndarray 형태로 나타내준다. 변수를 생략하고 x[조건]을 사용해도 바로 나타낼 수 있다. 다중조건 사용해서 데이터 선택하기 앞서는 단일조건에 해당한 이야기이다. 다중조건을 사용할 경우가 많은데, numpy에서는 and, or, not같은 논리 연산자 사용이 불가능하다. 그래서 and - & , or - |(엔터키 위에 원화 shift)로 대체하여 사용할 수 있다. 마찬가지로 조건을 가로로 묶고(중요..
데이터 사이언스 메뉴얼/numpy 검색 결과
전 글에 이어서 진행됩니다. 기본 사칙연산하기(더하기, 빼기, 곱하기, 나누기) 기본적으로 numpy의 연산은 python에서 연산과 비슷한 개념을 갖고 있다. 단 주의해야할 점은 행렬의 갯수가 같아야 한다. m x n 의 데이터 형태면 연산할 데이터의 형태가 모두 같아야 한다. (broadcasting을 활용해 예외도 나올 수 있다. broadcasting은 다음에 알아보도록 하자) - np.add(x, y) -> 더하기 연산 : 이와 같은 내장함수 형태로 계산을 가능하고, x + y와 같이 연산해도 같은 값이 나온다. - np.substract(x, y) = x - y -> 빼기 연산 - np.multiply(x, y) = x * y -> 곱하기 연산 - np.divide(x, y) = x / y -..
전 글에 이어서 진행됩니다. 원하는 데이터 값(들) 가져오기 인덱싱(원하는 요소 추출, 차원축소의 기능) 1차원 데이터에서 값 가져오기 numpy에서 인덱싱은 파이썬 리스트의 인덱싱과 비슷한 원리이다. [ ]를 사용하여 값을 추출해온고, 항상 첫 번째 값은 0부터 시작이다. - 변수명[n] -> n+1번째 값을 가져온다. - 변수명[-1] -> 마지막 값을 가져온다. - 변수명[n] = 값 -> 원하는 위치에 값을 저장하여 데이터를 바꿀 수도 있다. 2차원 데이터에서 값 가져오기 2차원 데이터는 행과 열이 있느 데이터이다. (수학에서 x, y 좌표평면과 비슷한 개념이고 선형대수의 행렬이랑 같은 개념이다) - 변수명[m, n] -> m+1번째 행, n+1번째 열을 가져온다. (마찬가지로 0부터 시작이여서 ..
Numpy모듈에 대해 Numpy란? : “Numerical Python“의 약자로 대규모 다차원 배열과 행렬 연산에 필요한 다양한 함수를 제공한고, 파이썬 기반 데이터 분석 환경에서 행렬 연산을 위한 핵심 라이브러리. (numpy를 np로 보통 축약해서 쓴다. = 사람들간의 약속) Numpy를 사용하는 이유 : 1) 메모리 사이즈 : 메모리 버퍼에 배열 데이터를 저장하고 처리하는 효율적인 인터페이스를 제공한다. 2) 성능 : 파이썬 list 객체를 개선한 NumPy의 ndarray 객체를 통해 더 많은 데이터를 더 빠르게 처리할 수 있다. 3) 빌트인 함수 : 선형대수, 통계관련 여러 함수가 내장되어있다. Numpy를 사용하기 전 배열이란? : NumPy 배열은 과 같이 다차원 배열을 지원하고, 구조는 ..
최근댓글