퍼셉트론에서 신경망으로 앞 시간에 퍼셉트론에 대해 배웠는데, 이 퍼셉트론은 가중치를 설정하는 작업을 사람이 직접해야 됩니다. 이 수동으로 작업하는 과정을 해결하기 위해 신경망이라는 개념이 나오게 되었습니다. 신경망의 예 신경망을 그림으로 나타내면 위 그림과 같습니다. 가장 왼쪽 줄을 입력층, 오른쪽 줄을 출력층, 중간 줄을 은닉층이라고 부르는데, 은닉층의 뉴런은 사람 눈에는 보이지 않습니다. 그리고 신경망에는 층이라는 개념이 있는데, 왼쪽부터 0,1,2층이라고 부르고 위에서는 입력층이 0층, 은닉층이 1층, 출력층이 2층이 됩니다. (층을 부르는 개념은 사람마다, 문헌마다 다를 수 있습니다.) 퍼셉트론 복습 신경망의 신호 전달 방법을 보기 전에 퍼셉트론을 복습해보면 위에 사진과 같이 x1, x2라는 두 ..
퍼셉트론 검색 결과
퍼셉트론이란? 퍼셉트론은 프랑크 로젠블라트가 1957년에 고안한 알고리즘으로 딥러닝(신경망)의 기원이 되는 알고리즘이다. 미분적분학을 하기 전에 사칙연산을 하는 것처럼, 딥러닝을 배우기 위해서는 퍼셉트론의 구조를 배우는 것이 매우 중요한 일이기 기 때문에 익혀둬야 한다. 퍼셉트론이란 위 사진처럼 신호(x1, x2)를 입력받아 하나의 신호(y)를 출력하는 것을 말합니다. 그림에 있는 원들을 뉴런 또는 노드라고 부르며, 입력 신호가 뉴런에 보내질 때는 각각 고유한 가중치(w1, w2)가 곱해집니다. 뉴런에서 보내온 신호의 총합이 정해진 한계를 넘어설 때만 1(흐른다)를 출력하고, 이를 '뉴런이 활성화한다'라고 표현하기도 합니다. 그리고 이 한계를 임계값이라고 부르며 θ라는 기호로 나타냅니다. 위의 그림은 퍼..
Deep Learning이란? 4차 산업을 맞아 빅데이터와 인공지능이라는 분야가 사람들 사이에서 화두가 되면서, Deep Learning이라는 기술이 붐을 일으키고 있다. 이 Deep Learning이 무엇인지 이 글에서 알아보고자 한다. 먼저 딥러닝은 머신러닝에 포함되고, 머신러닝은 인공지능에 포함된다. 인공지능이라는 분야에 머신러닝이라는 기계학습 개념이 있는 것이고, 머신러닝에서 좀 더 고도화 된 기술이 딥러닝이다. 인공지능 인공지능은 1950년대 초기 컴퓨터 과학 분야에서 '컴퓨터가 생각 할 수 있는가?'라는 질문을 하면서 시작되었다. 그리고 그 연구는 보통의 사람이 수행하는 지능적인 작업을 자동화하기 위한 활동으로 이어졌다. 많은 전문가는 프로그래머들이 명시적인 규칙을 많이 만들어, 지식을 다루면..
최근댓글