• 검색

  • 글작성
  • 방명록
  • 환경설정
  • 메뉴 닫기
데이터 사이언스 사용 설명서
CATEGORY
  • 데이터 사이언스 사용 설명서 (341)
    • 데이터사이언스 정보 (4)
    • 소개 및 연구분야 (4)
      • 김민재 - NeuroScience (1)
      • 차준영 - 홀로그램 (0)
      • 최선안 - Domain Adaptation (0)
      • 한주혁 - NeuroScience (3)
    • 데이터 분석 & 시각화 (65)
      • Crawling (5)
      • Numpy (3)
      • SQL (3)
      • Tableau (2)
      • OpenCV (44)
      • Pandas (8)
    • 기계학습 (41)
      • Kaggle (4)
      • Machine Learning (37)
    • 딥러닝 (64)
      • Deep Learning (10)
      • 컴퓨터비전 (5)
      • 자연어처리 (16)
      • 추천시스템 (3)
      • 시계열 (27)
    • 컴퓨터 공학 (32)
      • 자료구조 (28)
      • 알고리즘 (0)
      • 컴퓨터 네트워크 (0)
      • 운영체제 (2)
      • 클라우드 컴퓨팅 (2)
    • 버전 관리 (11)
      • Django (1)
      • git & github (10)
    • 기타 정보 (10)
      • 기업 분석 (0)
      • Django (0)
      • 삼성 SDS Brightics (0)
      • 오류 코드 해결 모음 (10)
    • Algorithm 문제 풀이 (7)
      • 문제풀이 (7)
      • 알고리즘 (0)
    • Programming Language (12)
      • python (4)
      • R (7)
      • C, C++ (1)
    • 데이터 사이언스 메뉴얼 (49)
      • python (5)
      • numpy (4)
      • pandas (10)
      • data visualization (4)
      • Crawling (2)
      • National Language Processin.. (4)
      • Object classification (8)
      • Machine Learning (9)
      • Deep Learning (1)
      • 데이터사이언스 정보 (1)
    • 기타 (21)
      • ADsP (데이터분석준전문가) (8)
      • 기업분석 (3)
      • 컨퍼런스 후기 (1)
      • HTML (준영) (0)
      • Slack Trading Bot (준영) (5)
    • 삼성 SDS Brightics (20)
VISITOR 오늘 전체
  • 글쓰기
  • 환경설정
  • 로그인
  • 로그아웃
  • 취소

Time 검색 결과

해당 글 1건
[OpenCV Programming] 코너점 검출

이전 글에서 살펴본 매칭은 영상 전체를 바탕으로 비교하는 방법이기 때문에 비교할 영상이 비슷할 때만 좋은 결과가 나타난다. 즉, 물체의 변환이 있거나 회전이 있으면 좋은 결과를 얻을 수 없는 단점을 지닌다. pixel의 변화가 급격하게 일어나는 곳의 코너에 초점을 두어 영상 속의 여러 특징을 얻어내는 것이 필요하다. 1. Harris 코너 검출 Harris 코너 검출은 Sobel 필터로 edge를 찾아낸 다음, Gradiant 변화량을 측정해서 x축과 y축으로 동시에 급격하게 변화한 지점을 코너로 판단한다. import cv2 import numpy as np img = cv2.imread('weapon/search/vector.jpg') gray = cv2.cvtColor(img, cv2.COLOR_B..

데이터 분석 & 시각화/OpenCV 2020. 8. 6. 15:00
  • 이전
  • 1
  • 다음

CATEGORY

  • 데이터 사이언스 사용 설명서 (341)
    • 데이터사이언스 정보 (4)
    • 소개 및 연구분야 (4)
      • 김민재 - NeuroScience (1)
      • 차준영 - 홀로그램 (0)
      • 최선안 - Domain Adaptation (0)
      • 한주혁 - NeuroScience (3)
    • 데이터 분석 & 시각화 (65)
      • Crawling (5)
      • Numpy (3)
      • SQL (3)
      • Tableau (2)
      • OpenCV (44)
      • Pandas (8)
    • 기계학습 (41)
      • Kaggle (4)
      • Machine Learning (37)
    • 딥러닝 (64)
      • Deep Learning (10)
      • 컴퓨터비전 (5)
      • 자연어처리 (16)
      • 추천시스템 (3)
      • 시계열 (27)
    • 컴퓨터 공학 (32)
      • 자료구조 (28)
      • 알고리즘 (0)
      • 컴퓨터 네트워크 (0)
      • 운영체제 (2)
      • 클라우드 컴퓨팅 (2)
    • 버전 관리 (11)
      • Django (1)
      • git & github (10)
    • 기타 정보 (10)
      • 기업 분석 (0)
      • Django (0)
      • 삼성 SDS Brightics (0)
      • 오류 코드 해결 모음 (10)
    • Algorithm 문제 풀이 (7)
      • 문제풀이 (7)
      • 알고리즘 (0)
    • Programming Language (12)
      • python (4)
      • R (7)
      • C, C++ (1)
    • 데이터 사이언스 메뉴얼 (49)
      • python (5)
      • numpy (4)
      • pandas (10)
      • data visualization (4)
      • Crawling (2)
      • National Language Processin.. (4)
      • Object classification (8)
      • Machine Learning (9)
      • Deep Learning (1)
      • 데이터사이언스 정보 (1)
    • 기타 (21)
      • ADsP (데이터분석준전문가) (8)
      • 기업분석 (3)
      • 컨퍼런스 후기 (1)
      • HTML (준영) (0)
      • Slack Trading Bot (준영) (5)
    • 삼성 SDS Brightics (20)

RECENTLY

  • 최근 글
  • 최근 댓글

최근 글

최근댓글

태그

  • python
  • Computer Vision
  • Machine Learning
  • web programming
  • DataFrame
  • python library
  • 삼성SDS
  • pandas
  • 브라이틱스서포터즈
  • 판다스
  • 머신러닝
  • 딥러닝
  • opencv
  • 시계열 분석
  • 파이썬
더보기+

VISITOR

오늘
어제
전체
Powered by Privatenote Copyright © 데이터 사이언스 사용 설명서 All rights reserved. TistoryWhaleSkin3.2

티스토리툴바