이번에는 Pycaret을 통해서 Training을 진행한 모델들의 Feature Importance를 구하는 과정에 대해서 포스팅을 해볼 예정이다. Feature Importance란 무엇인가?? Feature Importance는 기본적으로, 각 모델이 Target 값을 예측하는 과정에서 각 Feature들이 Prediction에 얼마나 큰 영향을 미쳤는지를 알려주는 지표이다. Feature Importance를 구하는 방법은 여러가지가 있는데, 가장 기본적으로 Coefficient를 구하는 방법(Linear Model & Tree Model), Permutation importance, SHAP Value가 있다. Linear Model 가장 기본적인 방법으로는 Linear Model을 생각했을 때,..
regression 검색 결과
Pycaret Pycaret은 Machine Learning Workflow를 자동화하는 오픈소스 라이브러리이다. Classification, Regression, Clustering 등의 Task에서 사용하는 여러 모델들을 동일한 환경에서 한번에 한 줄의 코드로 실행할 수 있도록 자동화한 라이브러리이다. 여러 모델을 비교할 수 있으며, 각 모델 별로 튜닝을 진행할 수도 있다. (2022.07.17 현재, 가장 최근 Release는 Pycaret 2.3.10) 현재 연구 중인 분야가 Regression Task이기 때문에, Regression을 기준으로 설명한다. 여기에서는 내가 연구를 진행하면서 사용한 주요 메서드와 그 안에 입력한 파라미터들을 위주로 정리를 했으며, 추가적인 내용을 원하거나, 더욱 구..
1. 예측 모델 적용 및 평가 이전 글 [논문 Review] 콜센터 인입 콜량 예측을 위한 시계열 모델 비교 분석 1에서 소개한 것처럼, 콜센터의 콜량을 예측하는 기법은 다양하다. 하지만, 국내 데이터로 연구된 사례는 드물다. 해당 연구에서는 ARIMA, 인공신경망 등 다양한 모델 기법을 활용해서 결과를 비교한 뒤 최적의 모델을 도출하는 순서로 진행되었다. 모델 평가 지표는 MAPE(Mean Absolute Percentage Error)와 RMSE(Root Mean Square Error)를 사용했다. - MAPE : 예측 값과 실제 값의 차이의 절댓값에 대한 평균값으로 실제 값과 예측 오류 사이의 비율을 확인하는 지표다. - RMSE : MSE(Mean Square Error)의 제곱근에 해당하는 값..
최근댓글