• 검색

  • 글작성
  • 방명록
  • 환경설정
  • 메뉴 닫기
데이터 사이언스 사용 설명서
CATEGORY
  • 데이터 사이언스 사용 설명서 (341)
    • 데이터사이언스 정보 (4)
    • 소개 및 연구분야 (4)
      • 김민재 - NeuroScience (1)
      • 차준영 - 홀로그램 (0)
      • 최선안 - Domain Adaptation (0)
      • 한주혁 - NeuroScience (3)
    • 데이터 분석 & 시각화 (65)
      • Crawling (5)
      • Numpy (3)
      • SQL (3)
      • Tableau (2)
      • OpenCV (44)
      • Pandas (8)
    • 기계학습 (41)
      • Kaggle (4)
      • Machine Learning (37)
    • 딥러닝 (64)
      • Deep Learning (10)
      • 컴퓨터비전 (5)
      • 자연어처리 (16)
      • 추천시스템 (3)
      • 시계열 (27)
    • 컴퓨터 공학 (32)
      • 자료구조 (28)
      • 알고리즘 (0)
      • 컴퓨터 네트워크 (0)
      • 운영체제 (2)
      • 클라우드 컴퓨팅 (2)
    • 버전 관리 (11)
      • Django (1)
      • git & github (10)
    • 기타 정보 (10)
      • 기업 분석 (0)
      • Django (0)
      • 삼성 SDS Brightics (0)
      • 오류 코드 해결 모음 (10)
    • Algorithm 문제 풀이 (7)
      • 문제풀이 (7)
      • 알고리즘 (0)
    • Programming Language (12)
      • python (4)
      • R (7)
      • C, C++ (1)
    • 데이터 사이언스 메뉴얼 (49)
      • python (5)
      • numpy (4)
      • pandas (10)
      • data visualization (4)
      • Crawling (2)
      • National Language Processin.. (4)
      • Object classification (8)
      • Machine Learning (9)
      • Deep Learning (1)
      • 데이터사이언스 정보 (1)
    • 기타 (21)
      • ADsP (데이터분석준전문가) (8)
      • 기업분석 (3)
      • 컨퍼런스 후기 (1)
      • HTML (준영) (0)
      • Slack Trading Bot (준영) (5)
    • 삼성 SDS Brightics (20)
VISITOR 오늘 전체
  • 글쓰기
  • 환경설정
  • 로그인
  • 로그아웃
  • 취소

계단 함수 검색 결과

해당 글 1건
Deep Learning - 신경망과 활성화 함수

퍼셉트론에서 신경망으로 앞 시간에 퍼셉트론에 대해 배웠는데, 이 퍼셉트론은 가중치를 설정하는 작업을 사람이 직접해야 됩니다. 이 수동으로 작업하는 과정을 해결하기 위해 신경망이라는 개념이 나오게 되었습니다. 신경망의 예 신경망을 그림으로 나타내면 위 그림과 같습니다. 가장 왼쪽 줄을 입력층, 오른쪽 줄을 출력층, 중간 줄을 은닉층이라고 부르는데, 은닉층의 뉴런은 사람 눈에는 보이지 않습니다. 그리고 신경망에는 층이라는 개념이 있는데, 왼쪽부터 0,1,2층이라고 부르고 위에서는 입력층이 0층, 은닉층이 1층, 출력층이 2층이 됩니다. (층을 부르는 개념은 사람마다, 문헌마다 다를 수 있습니다.) 퍼셉트론 복습 신경망의 신호 전달 방법을 보기 전에 퍼셉트론을 복습해보면 위에 사진과 같이 x1, x2라는 두 ..

딥러닝/Deep Learning 2021. 2. 9. 22:57
  • 이전
  • 1
  • 다음

CATEGORY

  • 데이터 사이언스 사용 설명서 (341)
    • 데이터사이언스 정보 (4)
    • 소개 및 연구분야 (4)
      • 김민재 - NeuroScience (1)
      • 차준영 - 홀로그램 (0)
      • 최선안 - Domain Adaptation (0)
      • 한주혁 - NeuroScience (3)
    • 데이터 분석 & 시각화 (65)
      • Crawling (5)
      • Numpy (3)
      • SQL (3)
      • Tableau (2)
      • OpenCV (44)
      • Pandas (8)
    • 기계학습 (41)
      • Kaggle (4)
      • Machine Learning (37)
    • 딥러닝 (64)
      • Deep Learning (10)
      • 컴퓨터비전 (5)
      • 자연어처리 (16)
      • 추천시스템 (3)
      • 시계열 (27)
    • 컴퓨터 공학 (32)
      • 자료구조 (28)
      • 알고리즘 (0)
      • 컴퓨터 네트워크 (0)
      • 운영체제 (2)
      • 클라우드 컴퓨팅 (2)
    • 버전 관리 (11)
      • Django (1)
      • git & github (10)
    • 기타 정보 (10)
      • 기업 분석 (0)
      • Django (0)
      • 삼성 SDS Brightics (0)
      • 오류 코드 해결 모음 (10)
    • Algorithm 문제 풀이 (7)
      • 문제풀이 (7)
      • 알고리즘 (0)
    • Programming Language (12)
      • python (4)
      • R (7)
      • C, C++ (1)
    • 데이터 사이언스 메뉴얼 (49)
      • python (5)
      • numpy (4)
      • pandas (10)
      • data visualization (4)
      • Crawling (2)
      • National Language Processin.. (4)
      • Object classification (8)
      • Machine Learning (9)
      • Deep Learning (1)
      • 데이터사이언스 정보 (1)
    • 기타 (21)
      • ADsP (데이터분석준전문가) (8)
      • 기업분석 (3)
      • 컨퍼런스 후기 (1)
      • HTML (준영) (0)
      • Slack Trading Bot (준영) (5)
    • 삼성 SDS Brightics (20)

RECENTLY

  • 최근 글
  • 최근 댓글

최근 글

최근댓글

태그

  • 시계열 분석
  • 삼성SDS
  • 브라이틱스서포터즈
  • 머신러닝
  • DataFrame
  • Computer Vision
  • Machine Learning
  • python library
  • python
  • 판다스
  • 딥러닝
  • opencv
  • web programming
  • pandas
  • 파이썬
더보기+

VISITOR

오늘
어제
전체
Powered by Privatenote Copyright © 데이터 사이언스 사용 설명서 All rights reserved. TistoryWhaleSkin3.2

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.