[파이썬 머신러닝 완벽가이드] : 사이킷 런 앙상블러닝, 결정 트리
앙상블러닝 앙상블이라는 단어는 머신러닝을 접하면서도 종종 들어본 경우가 많았을 것이다. 과연 앙상블 러닝은 어떤 기법일까? 기존의 문제점 (과적합) 앞에서 머신러닝을 통해서 예측을 하는 경우에, 과적합(Overfitting)이라는 문제가 항상 존재하고 있다는 것을 언급했었다. 과적합에 대한 원인은, 모델이 데이터를 기반으로 학습을 수행하는 과정에서 너무 세부적인 부분까지 학습데이터에 초점을 맞춘 나머지, 처음 보는 테스트 데이터는 제대로 예측을 못한다는 것이었다. 그렇다고, 너무 큰 단위로 학습을 하고 세부적인 부분을 무시해버린다면, 전체적인 ML 알고리즘 모델의 성능이 떨어지는 문제도 동시에 존재했다. 과적합에 대한 해결책 => 앙상블 러닝 따라서, 사람들은 이 문제를 해결하려고 시도하던 도중, 여러개..
기계학습/Machine Learning
2020. 8. 10. 18:19
최근댓글