• 검색

  • 글작성
  • 방명록
  • 환경설정
  • 메뉴 닫기
데이터 사이언스 사용 설명서
CATEGORY
  • 데이터 사이언스 사용 설명서 (341)
    • 데이터사이언스 정보 (4)
    • 소개 및 연구분야 (4)
      • 김민재 - NeuroScience (1)
      • 차준영 - 홀로그램 (0)
      • 최선안 - Domain Adaptation (0)
      • 한주혁 - NeuroScience (3)
    • 데이터 분석 & 시각화 (65)
      • Crawling (5)
      • Numpy (3)
      • SQL (3)
      • Tableau (2)
      • OpenCV (44)
      • Pandas (8)
    • 기계학습 (41)
      • Kaggle (4)
      • Machine Learning (37)
    • 딥러닝 (64)
      • Deep Learning (10)
      • 컴퓨터비전 (5)
      • 자연어처리 (16)
      • 추천시스템 (3)
      • 시계열 (27)
    • 컴퓨터 공학 (32)
      • 자료구조 (28)
      • 알고리즘 (0)
      • 컴퓨터 네트워크 (0)
      • 운영체제 (2)
      • 클라우드 컴퓨팅 (2)
    • 버전 관리 (11)
      • Django (1)
      • git & github (10)
    • 기타 정보 (10)
      • 기업 분석 (0)
      • Django (0)
      • 삼성 SDS Brightics (0)
      • 오류 코드 해결 모음 (10)
    • Algorithm 문제 풀이 (7)
      • 문제풀이 (7)
      • 알고리즘 (0)
    • Programming Language (12)
      • python (4)
      • R (7)
      • C, C++ (1)
    • 데이터 사이언스 메뉴얼 (49)
      • python (5)
      • numpy (4)
      • pandas (10)
      • data visualization (4)
      • Crawling (2)
      • National Language Processin.. (4)
      • Object classification (8)
      • Machine Learning (9)
      • Deep Learning (1)
      • 데이터사이언스 정보 (1)
    • 기타 (21)
      • ADsP (데이터분석준전문가) (8)
      • 기업분석 (3)
      • 컨퍼런스 후기 (1)
      • HTML (준영) (0)
      • Slack Trading Bot (준영) (5)
    • 삼성 SDS Brightics (20)
VISITOR 오늘 전체
  • 글쓰기
  • 환경설정
  • 로그인
  • 로그아웃
  • 취소

GraphViz 검색 결과

해당 글 1건
[파이썬 머신러닝 완벽가이드] : 사이킷 런 결정트리 하이퍼 파라미터, 시각화Graphviz

사이킷런에서는 분류를 위한 결정트리 클래스인 DecisionTreeClassifier와, 회귀를 위한 결정트리클래스인DecisionTreeRegression을 제공한다. 두가지 클래스는 다음의 하이퍼파라미터를 동일하게 제공한다. 대부분의 알고리즘이 직면한 문제가 과적합인 만큼 결정트리의 하이퍼 파라미터 외에도 대부분의 머신러닝 알고리즘들의 하이퍼 파라미터는 과적합을 제어하기 위한 목적으로 설정해준다고 생각을 하면 이해하기 쉽다. 결정트리 하이퍼 파라미터 - min_samples_split : 노드를 분할하기 위한 최소한의 샘플 데이터 수. -> 과적합을 제어하는 데 사용됨. 디폴트는 2이고 작게 설정할수록 분할되는 노드가 많아져서 과적합 가능성 증가 과적합 제어. 1로 설정할 경우 분할되는 노드가 많아져..

기계학습/Machine Learning 2020. 8. 12. 15:51
  • 이전
  • 1
  • 다음

CATEGORY

  • 데이터 사이언스 사용 설명서 (341)
    • 데이터사이언스 정보 (4)
    • 소개 및 연구분야 (4)
      • 김민재 - NeuroScience (1)
      • 차준영 - 홀로그램 (0)
      • 최선안 - Domain Adaptation (0)
      • 한주혁 - NeuroScience (3)
    • 데이터 분석 & 시각화 (65)
      • Crawling (5)
      • Numpy (3)
      • SQL (3)
      • Tableau (2)
      • OpenCV (44)
      • Pandas (8)
    • 기계학습 (41)
      • Kaggle (4)
      • Machine Learning (37)
    • 딥러닝 (64)
      • Deep Learning (10)
      • 컴퓨터비전 (5)
      • 자연어처리 (16)
      • 추천시스템 (3)
      • 시계열 (27)
    • 컴퓨터 공학 (32)
      • 자료구조 (28)
      • 알고리즘 (0)
      • 컴퓨터 네트워크 (0)
      • 운영체제 (2)
      • 클라우드 컴퓨팅 (2)
    • 버전 관리 (11)
      • Django (1)
      • git & github (10)
    • 기타 정보 (10)
      • 기업 분석 (0)
      • Django (0)
      • 삼성 SDS Brightics (0)
      • 오류 코드 해결 모음 (10)
    • Algorithm 문제 풀이 (7)
      • 문제풀이 (7)
      • 알고리즘 (0)
    • Programming Language (12)
      • python (4)
      • R (7)
      • C, C++ (1)
    • 데이터 사이언스 메뉴얼 (49)
      • python (5)
      • numpy (4)
      • pandas (10)
      • data visualization (4)
      • Crawling (2)
      • National Language Processin.. (4)
      • Object classification (8)
      • Machine Learning (9)
      • Deep Learning (1)
      • 데이터사이언스 정보 (1)
    • 기타 (21)
      • ADsP (데이터분석준전문가) (8)
      • 기업분석 (3)
      • 컨퍼런스 후기 (1)
      • HTML (준영) (0)
      • Slack Trading Bot (준영) (5)
    • 삼성 SDS Brightics (20)

RECENTLY

  • 최근 글
  • 최근 댓글

최근 글

최근댓글

태그

  • web programming
  • 시계열 분석
  • 머신러닝
  • python
  • 딥러닝
  • opencv
  • 삼성SDS
  • 파이썬
  • 브라이틱스서포터즈
  • Computer Vision
  • pandas
  • 판다스
  • python library
  • Machine Learning
  • DataFrame
더보기+

VISITOR

오늘
어제
전체
Powered by Privatenote Copyright © 데이터 사이언스 사용 설명서 All rights reserved. TistoryWhaleSkin3.2

티스토리툴바