• 검색

  • 글작성
  • 방명록
  • 환경설정
  • 메뉴 닫기
데이터 사이언스 사용 설명서
CATEGORY
  • 데이터 사이언스 사용 설명서 (341)
    • 데이터사이언스 정보 (4)
    • 소개 및 연구분야 (4)
      • 김민재 - NeuroScience (1)
      • 차준영 - 홀로그램 (0)
      • 최선안 - Domain Adaptation (0)
      • 한주혁 - NeuroScience (3)
    • 데이터 분석 & 시각화 (65)
      • Crawling (5)
      • Numpy (3)
      • SQL (3)
      • Tableau (2)
      • OpenCV (44)
      • Pandas (8)
    • 기계학습 (41)
      • Kaggle (4)
      • Machine Learning (37)
    • 딥러닝 (64)
      • Deep Learning (10)
      • 컴퓨터비전 (5)
      • 자연어처리 (16)
      • 추천시스템 (3)
      • 시계열 (27)
    • 컴퓨터 공학 (32)
      • 자료구조 (28)
      • 알고리즘 (0)
      • 컴퓨터 네트워크 (0)
      • 운영체제 (2)
      • 클라우드 컴퓨팅 (2)
    • 버전 관리 (11)
      • Django (1)
      • git & github (10)
    • 기타 정보 (10)
      • 기업 분석 (0)
      • Django (0)
      • 삼성 SDS Brightics (0)
      • 오류 코드 해결 모음 (10)
    • Algorithm 문제 풀이 (7)
      • 문제풀이 (7)
      • 알고리즘 (0)
    • Programming Language (12)
      • python (4)
      • R (7)
      • C, C++ (1)
    • 데이터 사이언스 메뉴얼 (49)
      • python (5)
      • numpy (4)
      • pandas (10)
      • data visualization (4)
      • Crawling (2)
      • National Language Processin.. (4)
      • Object classification (8)
      • Machine Learning (9)
      • Deep Learning (1)
      • 데이터사이언스 정보 (1)
    • 기타 (21)
      • ADsP (데이터분석준전문가) (8)
      • 기업분석 (3)
      • 컨퍼런스 후기 (1)
      • HTML (준영) (0)
      • Slack Trading Bot (준영) (5)
    • 삼성 SDS Brightics (20)
VISITOR 오늘 전체
  • 글쓰기
  • 환경설정
  • 로그인
  • 로그아웃
  • 취소

LGBM 검색 결과

해당 글 1건
[파이썬 머신러닝 완벽 가이드] : 사이킷런 앙상블 러닝 ( XGBoost / LightGBM)

XGBoost는 트리 기반 앙상블 러닝에서 가장 각광받고 있는 알고리즘 중 하나이다. 분류에 있어서 일반적으로 다른 머신러닝 알고리즘보다 뛰어난 예측 성능을 보여준다. XGBoost XGBoost는 GBoost(Gradient Boost)에서도 알수 있듯이, GBM(Gradient Boosting Machine)을 기반으로 하고 있다. 기존 GBM에서 단점이었던, 느린 수행시간과 과적합을 제어할 방법의 부재를 XGBoost에서 해결하였다. XGBoost의 장점 빠른 수행시간 : GBM에서 하지 못헀던 병렬 수행 및 다양한 기능들을 통해서 GBM보다 빠르다. 하지만, 상대적으로 GBM보다 빠른 것이지, 전체 머신러닝 알고리즘에서 빠른 편에 속하지는 않는다. 과적합 규제 기능 : XGBoost는 자체에 과적..

기계학습/Machine Learning 2020. 8. 21. 16:22
  • 이전
  • 1
  • 다음

CATEGORY

  • 데이터 사이언스 사용 설명서 (341)
    • 데이터사이언스 정보 (4)
    • 소개 및 연구분야 (4)
      • 김민재 - NeuroScience (1)
      • 차준영 - 홀로그램 (0)
      • 최선안 - Domain Adaptation (0)
      • 한주혁 - NeuroScience (3)
    • 데이터 분석 & 시각화 (65)
      • Crawling (5)
      • Numpy (3)
      • SQL (3)
      • Tableau (2)
      • OpenCV (44)
      • Pandas (8)
    • 기계학습 (41)
      • Kaggle (4)
      • Machine Learning (37)
    • 딥러닝 (64)
      • Deep Learning (10)
      • 컴퓨터비전 (5)
      • 자연어처리 (16)
      • 추천시스템 (3)
      • 시계열 (27)
    • 컴퓨터 공학 (32)
      • 자료구조 (28)
      • 알고리즘 (0)
      • 컴퓨터 네트워크 (0)
      • 운영체제 (2)
      • 클라우드 컴퓨팅 (2)
    • 버전 관리 (11)
      • Django (1)
      • git & github (10)
    • 기타 정보 (10)
      • 기업 분석 (0)
      • Django (0)
      • 삼성 SDS Brightics (0)
      • 오류 코드 해결 모음 (10)
    • Algorithm 문제 풀이 (7)
      • 문제풀이 (7)
      • 알고리즘 (0)
    • Programming Language (12)
      • python (4)
      • R (7)
      • C, C++ (1)
    • 데이터 사이언스 메뉴얼 (49)
      • python (5)
      • numpy (4)
      • pandas (10)
      • data visualization (4)
      • Crawling (2)
      • National Language Processin.. (4)
      • Object classification (8)
      • Machine Learning (9)
      • Deep Learning (1)
      • 데이터사이언스 정보 (1)
    • 기타 (21)
      • ADsP (데이터분석준전문가) (8)
      • 기업분석 (3)
      • 컨퍼런스 후기 (1)
      • HTML (준영) (0)
      • Slack Trading Bot (준영) (5)
    • 삼성 SDS Brightics (20)

RECENTLY

  • 최근 글
  • 최근 댓글

최근 글

최근댓글

태그

  • Machine Learning
  • 시계열 분석
  • pandas
  • 파이썬
  • 머신러닝
  • web programming
  • python
  • DataFrame
  • 브라이틱스서포터즈
  • 딥러닝
  • opencv
  • 삼성SDS
  • python library
  • Computer Vision
  • 판다스
더보기+

VISITOR

오늘
어제
전체
Powered by Privatenote Copyright © 데이터 사이언스 사용 설명서 All rights reserved. TistoryWhaleSkin3.2

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.