회귀 지도학습은 2가지 유형, 분류와 회귀로 나뉜다. 분류 - 예측값이 카테고리와 같은 이산형 값 회귀 - 예측값이 연속형 숫자 회귀는 그 중에서도 선형회귀가 가장 많이 사용된다. 선형 회귀는 직선형 회귀선을 예측값과 실제값의 차이가 가장 작게 산출되도록 가중치들을 최적화하여 찾아내는 방식을 의미한다. 단순 선형 회귀 단순 선형 회귀는 독립변수(X) 하나, 종속변수(Y)도 하나인 선형 회귀를 의미한다. 독립변수와 종속변수가 갑자기 나와서 헷갈릴 수도 있지만, 쉽게 말해 독립변수는 피처를, 종속변수는 레이블 값을 의미한다. 따라서 단순 선형 회귀는 피처가 하나인 데이터를 가장 잘 나타내는 회귀선을 찾는 기법이라고 생각하면 된다. X, Y를 좌표평면에 찍고, 그 점들을 가장 잘 표현할 수 있는 직선을 찾아내..
가중치 검색 결과
해당 글 2건
[파이썬 머신러닝 완벽 가이드] : 회귀 ( 선형 회귀 / 경사하강법)
기계학습/Machine Learning
2020. 8. 30. 18:14
(JH)선형회귀(Linear Regression) - Do it 딥러닝 입문 1
선형회귀란? 가장 간단 + 딥러닝의 기초가 되는 머신러닝 알고리즘으로, 데이터들을 가장 잘 표현하는 1차 함수식을 만드는 것이다. (이번 포스팅에서는 기초적인 내용의 이해를 위해 "특성이 1개"인 모델에 대해 이야기 한다.) 일반적으로 우리가 아는 1차 함수식은 y = a*x + b의 형태 이것을 머신러닝에서 쓰는 방식으로 바꾸면 y_hat = W*x + b이다. (선형함수식이라고 표현을 한다.) x: 입력값 y: 타겟값 W: 가중치 b: 절편 1차 함수식을 y와 x에 대한 식으로 이해를 하듯이 위 식을 W와 y_hat에 대한 식으로 이해를 하면 된다. ☞왜 y가 아니라 y_hat? y와 y_hat의 차이점을 설명하자면, y는 이미 우리가 가지고 있는 정답이라고 볼 수 있고, y_hat은 y를 예측하기 ..
기계학습/Machine Learning
2020. 2. 29. 13:32
최근댓글