[Hands-on Machine Learning] 하이퍼 파라미터 튜닝, 테스트세트로 모델 평가 - housing data
모델 선택과 평가, 교차 검증 파이프라인(pipeline), 특성 스케일링(feature scaling), fit, transform, fit_transform() 메서드의 차이 데이터 변환기, Pipeline 만들기 계층적 샘플링 (Stratified Sampling) 데이터 셋이 충분히 크다면 일반.. dsbook.tistory.com 가능성 있는 모델들을 모두 추렸다고 가정한 후, 이제 이 모델들을 세부 튜닝하기 위한 방법을 몇 가지 살펴보자. 하이퍼 파라미터 튜닝 1. GridSearchCV (그리드 탐색) 가장 단순한 방법은 만족할 만한 하이퍼 파라미터 조합을 찾을 때까지 수동으로 하이퍼 파라미터를 조정하는 것이다. 이는 매우 지루한 작업이고 또 많은 경우의 수를 탐색하기에는 시간이 부족할 수도..
기계학습/Machine Learning
2020. 7. 10. 21:58
최근댓글