Universal functions (ufunc) — NumPy v1.15 Manual Universal functions (ufunc) A universal function (or ufunc for short) is a function that operates on ndarrays in an element-by-element fashion, supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a “vecto numpy.org Numpy에는 Universal function 기능을 제공한다. Numpy의 특별한 구조인 ndarray의 각 요소별로 연산하는 함수로 Braodca..
numpy 검색 결과
1차원 ndarray Numpy의 기본 자료형 ndarray의 기본적인 인덱싱과 슬라이싱은 List 객체와 동일하다. x1 = np.array([ 1, 3, 5, 7, 9]) x1[0] # 1 x1[3] # 7 x1[-1] # 9 x1[-2] # 7 x1[1:3] # [3, 5] 2차원 ndarray 2차원 리스트 배열에서의 indexing은 x[i][j] 형태로 가능한 것처럼, 2차원 ndarray 배열에서의 indexing은 x[i, j] 형태로 가능하다. 이때 i는 행, j는 열을 의미한다. 먼저 np.random.random로 (10, 5) 크기의 ndarray를 생성한다. x2 = np.random.random(size = (10, 5)) x2 기본적으로 ndarray 객체를 인덱싱을 할 경우,..
Numpy Numpy는 파이썬으로 데이터를 분석할 때 가장 많이 사용하는 모듈 중 하나이다. Numpy의 자료형은 ndarray로 효율적인 배열 연산을 하기 위해 개발되었다. 리스트와 ndarray는 유연성과 효율성 측면에서 비교할 수 있다. 파이썬 리스트의 경우, 서로 다른 자료형을 담을 수 있어 유연성이 높은 반면 각 요소의 정보를 따로 담아야 하기 때문에 반복문 사용이 필수적이라 효율성이 떨어진다. ndarray의 경우 같은 자료형만을 이용해 구성할 수 있어 유연성은 떨어지지만 모든 요소 정보를 한 번에 저장하고 C로 구현된 내부 반복문을 사용하기 때문에 속도가 매우 빠르다. 배열 만들기 : np.array() 리스트를 활용해 배열을 만들 수 있다. 이 외에, array() 함수의 인자로 리스트, ..
Pandas import pandas as pd import numpy as np 파이썬으로 데이터를 다루는 경우 정형화된 데이터는 주로 Pandas 와 Numpy를 통해서 다룬다. 하지만, Numpy는 저수준 API가 대부분 이므로, 여러가지 고급진 기능을 다양하게 사용할 수 있는 Pandas를 애용하는 사람들이 많다. 또한, Pandas는 리스트, 넘파이 등의 내부 데이터를 비롯하여, 코드 외부에 있는 csv등의 파일도 바로 Pandas객체로 만들수 있다는 장점을 가지고 있다. pd.read_csv() 판다스를 사용할 때, 가장 첫번째로 하게 되는 것은 아마 pd.read_csv()일 것이다. 이때, 가장 중요한 것은 파일의 경로를 제대로 쓰는 것이다. 해당 코드와 파일이 동일한 위치에 있을 경우에는..
전 글에 이어서 진행됩니다. 조건에 맞는 데이터 선택하기(boolean indexing) x % 2 == 0을 사용해 데이터들을 boolean형태로 바꿔준다. even_mask라는 변수에 조건 대입 원래있던 변수인 x에 대괄호를 사용해 x[even_mask]를 사용하면 해당 조건에 True인 값들만 다시 ndarray 형태로 나타내준다. 변수를 생략하고 x[조건]을 사용해도 바로 나타낼 수 있다. 다중조건 사용해서 데이터 선택하기 앞서는 단일조건에 해당한 이야기이다. 다중조건을 사용할 경우가 많은데, numpy에서는 and, or, not같은 논리 연산자 사용이 불가능하다. 그래서 and - & , or - |(엔터키 위에 원화 shift)로 대체하여 사용할 수 있다. 마찬가지로 조건을 가로로 묶고(중요..
전 글에 이어서 진행됩니다. 원하는 데이터 값(들) 가져오기 인덱싱(원하는 요소 추출, 차원축소의 기능) 1차원 데이터에서 값 가져오기 numpy에서 인덱싱은 파이썬 리스트의 인덱싱과 비슷한 원리이다. [ ]를 사용하여 값을 추출해온고, 항상 첫 번째 값은 0부터 시작이다. - 변수명[n] -> n+1번째 값을 가져온다. - 변수명[-1] -> 마지막 값을 가져온다. - 변수명[n] = 값 -> 원하는 위치에 값을 저장하여 데이터를 바꿀 수도 있다. 2차원 데이터에서 값 가져오기 2차원 데이터는 행과 열이 있느 데이터이다. (수학에서 x, y 좌표평면과 비슷한 개념이고 선형대수의 행렬이랑 같은 개념이다) - 변수명[m, n] -> m+1번째 행, n+1번째 열을 가져온다. (마찬가지로 0부터 시작이여서 ..
최근댓글